1,460 research outputs found

    Frequency dispersion of small-amplitude capillary waves in viscous fluids

    Get PDF
    This work presents a detailed study of the dispersion of capillary waves with small amplitude in viscous fluids using an analytically derived solution to the initial value problem of a small-amplitude capillary wave as well as direct numerical simulation. A rational parametrization for the dispersion of capillary waves in the underdamped regime is proposed, including predictions for the wave number of critical damping based on a harmonic-oscillator model. The scaling resulting from this parametrization leads to a self-similar solution of the frequency dispersion of capillary waves that covers the entire underdamped regime, which allows an accurate evaluation of the frequency at a given wave number, irrespective of the fluid properties. This similarity also reveals characteristic features of capillary waves, for instance that critical damping occurs when the characteristic time scales of dispersive and dissipative mechanisms are balanced. In addition, the presented results suggest that the widely adopted hydrodynamic theory for damped capillary waves does not accurately predict the dispersion when viscous damping is significant, and an alternative definition of the damping rate, which provides consistent accuracy in the underdamped regime, is presented

    TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness

    Get PDF
    This data set contains the data accompanying the article F. Denner and B. van Wachem, TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness, Journal of Computational Physics (2015), http://dx.doi.org/10.1016/j.jcp.2015.06.008.This data set contains the data accompanying the article F. Denner and B. van Wachem, TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness, Journal of Computational Physics (2015), http://dx.doi.org/10.1016/j.jcp.2015.06.008

    Artificial viscosity model to mitigate numerical artefacts at fluid interfaces with surface tension

    Get PDF
    The numerical onset of parasitic and spurious artefacts in the vicinity of uid interfaces with surface tension is an important and well-recognised problem with respect to the accuracy and numerical stability of interfacial ow simulations. Issues of particular interest are spurious capillary waves, which are spatially underresolved by the computational mesh yet impose very restrictive time-step requirements, as well as parasitic currents, typically the result of a numerically unbalanced curvature evaluation. We present an arti cial viscosity model to mitigate numerical artefacts at surface-tension-dominated interfaces without adversely a ecting the accuracy of the physical solution. The proposed methodology computes an additional interfacial shear stress term, including an interface viscosity, based on the local ow data and uid properties that reduces the impact of numerical artefacts and dissipates underresolved small scale interface movements. Furthermore, the presented methodology can be readily applied to model surface shear viscosity, for instance to simulate the dissipative e ect of surface-active substances adsorbed at the interface. The presented analysis of numerical test cases demonstrates the e cacy of the proposed methodology in diminishing the adverse impact of parasitic and spurious interfacial artefacts on the convergence and stability of the numerical solution algorithm as well as on the overall accuracy of the simulation results

    Impact of QED corrections to Higgs decay into four leptons at the LHC

    Full text link
    At the LHC a precise measurement of the Higgs boson mass (if discovered), at the level of 0.1-1%, will be possible through the channel g g --> H --> 4l for a wide range of Higgs mass values. To match such an accuracy, the systematic effects induced by QED corrections need to be investigated. In the present study the calculation of O(alpha) and higher order QED corrections is illustrated as well as their impact on the Higgs mass determination, once realistic event selection criteria for charged leptons and photons are considered.Comment: 5 pages, 5 figures, 1 table. Presented at HEP2005 July 21st-27th, 2005, Lisboa, Portugal and at RADCOR 2005, Shonan Village, October 2nd-7th, 2005, Japa

    Wall collision of deformable bubbles in the creeping flow regime

    Get PDF
    A systematic study of the hydrodynamic mechanisms governing the collision of a rising bubble with a solid wall in the creeping flow regime (Re >)

    Four-fermion production with RACOONWW

    Get PDF
    RACOONWW is an event generator for e+e- --> WW --> 4fermions(+gamma) that includes full tree-level predictions for e+e- --> 4f and e+e- --> 4f+gamma as well as O(alpha) corrections to e+e- --> 4f in the so-called double-pole approximation. We briefly sketch the concept of the calculation on which this generator is based and present some numerical results.Comment: 9 pages, latex, 6 postscript files, to appear in the proceedings of the UK Phenomenology Workshop on Collider Physics, Durham, UK, 19-24 September, 199

    Next-to-Next-to-Leading Electroweak Logarithms in W-pair Production at ILC

    Get PDF
    We derive the high energy asymptotic behavior of gauge boson production cross section in a spontaneously broken SU(2) gauge theory in the next-to-next-to-leading logarithmic approximation. On the basis of this result we obtain the logarithmically enhanced two-loop electroweak corrections to the differential cross section of W-pair production at ILC/CLIC up to the second power of the large logarithm.Comment: 17 pages, LaTeX, Eqs. (31) and (35) correcte

    About helicity conservation in gauge boson scattering at high energy

    Full text link
    We remark that the high energy gauge boson scattering processes involving two-body initial and final states, satisfy certain selection rules described as helicity conservation of the \underline{gauge boson} amplitudes (GBHC). These rules are valid at Born level, as well as at the level of the leading and sub-leading 1-loop logarithmic corrections, in both the Standard Model (SM) and the Minimal Supersymmetric Standard Model (MSSM). A "fermionic equivalence" theorem is also proved, which suggests that GBHC is valid at all orders in MSSM at sufficiently high energies, where the mass suppressed contributions are neglected.Comment: 7 pages, 2 figures, version to appear in Phys. Rev. Letter

    Magnetic flux response of non-Hermitian topological phases

    Get PDF
    We derive the response of non-Hermitian topological phases with intrinsic point gap topology to localized magnetic flux insertions. In two spatial dimensions, we identify the necessary and sufficient conditions for a flux skin effect that localizes an extensive number of in-gap modes at a flux core. In three dimensions, we furthermore establish the existence of: a flux spectral jump, where flux tube insertion fills up the entire point gap only at a single parallel crystal momentum; a higher-order flux skin effect, which occurs at the ends of flux tubes in presence of pseudo-inversion symmetry; and a flux Majorana mode that represents a spectrally isolated mid-gap state in the complex energy plane. We uniquely associate each non-Hermitian symmetry class with intrinsic point gap topology with one of these cases or a trivial flux response, and discuss possible experimental realizations

    A closed expression for the UV-divergent parts of one-loop tensor integrals in dimensional regularization

    Full text link
    Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the UV-divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.Comment: 19 pages (single column), the result of previous versions is further evaluated leading to a closed analytic expression for the UV-divergent part of an arbitrary one-loop tensor coefficient, title is modified accordingly, a sign error in the appendix (C_{00000000}) has been corrected, a mathematica notebook containing an implementation of the newly derived formula is attache
    • 

    corecore